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Abstract

Complex stress potentials are derived to obtain an analytical solution for the stresses in epicycloidal
specimens which contain a dislocation[ The solution is used to obtain an analytical expression for the stress
intensity factors of cusp!like cracks in such specimens which can be considered as a generalization of the
well established concept of Gri.th cracks[ It is shown that by suitable positioning of the dislocation\ both
positive and negative mode I stress intensity factors will result[ This illustrates the potential of epicycloid
specimens for determination of fracture properties under compressive loading where frictional contact of
the crack surfaces is a priori avoided[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ On the use of epicycloid specimens in fracture mechanics

In two recent papers by Gao et al[ "0887# and Mu�ller and Gao "0887# the potential of epicycloid
specimens for experimental determination of interface fracture properties as well as testing under
compressive loading conditions has been explored[ It was demonstrated that epicycloid specimens
contain defects in the form of cusps which can be considered as a generalization of the traditional
concept of a Gri.th crack[ So far the e}ects of thermo!mechanical loads "induced by a {hot spot|
region# and point forces have been explored[ In this brief note the concept of epicycloid fracture
specimens will be extended to include loading of epicycloid specimens by dislocations[

Recall that the generic mapping equation of the cycloid family is given by "cf[ Bronstein and
Semendjajew\ 0865 ^ Muskhelishvili\ 0852# ]
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Fig[ 0[ An epicycloid specimen with a dislocation[

z � v"z# � R 0z−
o

n¦0
zn¦01\ z � exp"iq#\ R �"n¦0#r "0[0#

where z � x¦iy is the position in the original complex plane n $ N\ q $ ð9\ 1p#\ o $ ð9\ 0Ł\ and r is
the radius of the revolving circle[ Note that by putting o � 0 epicycloids show the characteristic
feature of cusp!like cracks[ This is illustrated in Fig[ 0 which shows an epicycloid with only one
cusp\ the case where n � 0[ This contour is also known as Pascal|s limacžon[ As indicated in the
_gure the specimen contains a dislocation of strength b � bx¦iby "the Burgers vector# at the
position z9[ It is well known that the presence of dislocations within a solid leads to the formation
of stresses which in the present case give rise to a non!vanishing mixed!mode stress intensity at the
crack tip[

The following analysis of the stresses and of the stress intensity factors focuses on the geometry
shown in Fig[ 0[ However\ an attempt is made to present the analysis such that\ in principle\ it can
be generalized to cover other cases for which n × 0[ It is worth mentioning that epicycloid specimens
with cusp!like cracks can be treated analytically[ In other words ] epicycloids belong to the few
fracture mechanics specimens of _nite size which do not require numerical treatment such as
boundary collocation or _nite elements "cf[ Tada et al[\ 0874#[ This was demonstrated in the
aforementioned papers by the authors on this subject and it will now be shown that it also holds
for loading by dislocations[
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1[ Stress analysis

1[0[ Essentials of complex stress analysis

According to the concepts of two!dimensional theory of elasticity in complex variable notation
the resultant force\ F\ acting on a line\ L\ can be obtained from ]

F"z# � −ið8"z½#¦z½8?"z½#¦c"z½#Łz½�z
z½�a\ [z $ L "1[0#

where ð Łz½�z
z½�a denotes the increase undergone by the expression in brackets as the point z½ passes

along the line L from points a to z[ The symbols 8"z# and c"z# denote the complex stress potentials
of the MuskhelishviliÐKolosov equations "e[g[\ Sokolniko}\ 0845 ^ Muskhelishvili\ 0852# ]

syy¦sxx � 1ð8?"z#¦8?"z#Ł\

syy−sxx¦1isxy � 1ðz¹8ý"z#¦c?"z#Ł[ "1[1#

and sij\ i\ j $ "x\ y# are the stresses in rectangular coordinates[ The periphery of the epicycloid
specimen shown in Fig[ 0 is supposed to be free of tractions and\ therefore\ it is necessary and
su.cient that the resultant force\ F\ vanishes in each and every point\ z\ of it ]

8"z#¦z8?"z#¦c"z# � 9\ [z $ L[ "1[2#

1[1[ The stress potentials

According to the procedure presented in the papers by Gao et al[ "0887# and Mu�ller and Gao
"0887# the stress potentials\ 8"z# and c"z#\ are divided into two parts ]

8"z# � 8�"z#¦8s"z#\ c"z# � c�"z#¦cs"z#[ "1[3#

The _rst part\ identi_ed by the index {�|\ refers to the complex potentials that characterize the
stresses at point z produced by a dislocation of strength bx¦iby at a position z9 in an in_nite plane
"cf[ Rice\ 0857\ pp[ 115#0 ]

8�"z# � −iA"bx¦iby# ln"z−z9#\ A �
m

p"k¦0#
\ k � 8

2−3n\ plane strain

2−n

0¦n
\ plane stress

\ "1[4#

and ]

c�"z# � iA"bx−iby# ln"z−z9#¦iA"bx¦iby#
z¹9

z−z9

"1[5#

where m denotes the shear modulus[

0 Note that in Rice|s article the dislocation is situated at a position\ t\ on the real axis[ The stress potentials shown in
eqns "1[4# and "1[5# follow by application of the transformation rules for complex potentials to the case of a dislocation
positioned in the origin "see\ e[g[\ Milne!Thomson\ 0857\ Section 1[10#[
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The second set of functions in eqn "1[3#\ identi_ed by the subscript {s|\ must be chosen such that
eqn "1[2# is satis_ed\ i[e[ ]

8s"z#¦z8?s"z#¦cs"z# � −8�"z#−z8?�"z#−c�"z#\ [z $ L[ "1[6#

It is useful to evaluate this condition on the unit circle[ To this end the conformal mapping shown
in eqn "0[0# is used which reads\ in complex notation\ for n � 0\ o � 0 ]

z �
R
1

z"1−z#[ "1[7#

Moreover\ since the potentials 8s and cs are analytical within the unit circle they can be represented
by power series as follows ]

8s"z# � s
�

m�0

amzm\ cs � s
�

m�0

bmzm\ "1[8#

where rigid body displacements were ignored[ Now the Cauchy operator ]

0
1pi G=z=�0

"=# dz

z−h
\ [=h= ¾ 0 "1[09#

is applied to the left hand side "LHS# of eqn "1[6# resulting in1 ]

0
1pi G=z=�0

LHS dz

z−h
� s

�

m�0

amhm¦
0
1

a¹0h−
0
1
"a¹0h

1¦1a¹1h#

0 8s"h#¦
0
1

a¹0h−
0
1
"a¹0h

1¦1a¹1h#[ "1[00#

In order to determine the coe.cients a0 and a1 the Cauchy operator of eqn "1[09# is also applied
to the various terms shown on the right hand side "RHS# of eqn "1[6#[ By means of Cauchy|s
theorem it can be shown that ]

−
0

1pi G=z=�0

"8�"z#¦z8?�"z#¦c�"z## dz

z−h

� iA 0"bx¦iby#ðln"0−hz9#¦ln"1−h−z9#Ł−"bx−iby# G=z=�0

G"z\ z9# dz

z−h 1 "1[01#

with the following contraction ]

1 See Gao et al[ "0887# for further details of the proof for arbitrary values of n and o[
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G"x\ t# �
"x−t#"1−x−t#

0
0
x

−t¹1 01−
0
x

−t¹1
"1[02#

and constant terms have been omitted[
The symbol z9 allows one to identify the position of the dislocation in the plane of the unit circle

and is related to the location z9 in the original plane as follows ðcf[ eqn "1[7#Ł ]

z9 �
R
1

z9"1−z9#c z−z9 �
R
1
"z−z9#"1−z−z9#[ "1[03#

The remaining Cauchy integral in eqn "1[01# was solved by application of the residue theorem
using Mathematicaþ[ Because the result is lengthy it will not be repeated here in detail[ In the next
step eqn "1[01# was expanded in terms of the variable h[ This allows one to identify the coe.cients
l0 and l1 in the following series ]

0
1pi G=z=�0

RHS dz

z−h
� s

�

i�0

lih
i[ "1[04#

The explicit mathematical form of these coe.cients is quite unwieldy and will not explicitly be
presented in this paper[ By comparison of eqn "1[08# with eqn "1[03# the following relations for
the unknown coe.cients a0 and a1 are obtained ]

a0¦
0
1
a¹0−a¹1 � l0\ a1−

0
1
a¹0 � l1 "1[05#

from which the real parts can be determined ]

Re a0 � l0¦l1\ Re a1 � 0
1
"l0¦l1¦1l1#[ "1[06#

In fact\ it is su.cient to determine the real parts of these coe.cients since their imaginary parts
contribute only to a rigid body rotation which will be suppressed "see Mu�ller and Gao\ 0887\ for
the proof#[

By combination of eqns "1[3#Ð"1[5#\ "1[01# it _nally follows for the complex potential 8"h# ]

8"h# � iA"bx¦iby# ln
0−hz9

h−z9

−iA"bx−iby# G=z=�0

G"z\ z9# dz

z−h

−$
0
1

a¹0h−
0
1
"a¹0h

1¦1a¹1h#%[ "1[07#

The second potential c"h# can directly be obtained from eqn "1[6# as described in Gao et al[ "0887#[

1[2[ Stress intensity factors for the cusp in a Pascal|s limacžon specimen

The stress intensity factors "SIFs#\ KI and KII\ of a cusp in an epicycloid can be determined from
the following equation "see Gao et al[\ 0887# ]
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KI−iKII � − lim
zc:9

"1z−1pzc8?"zc## "1[08#

where zc denotes a complex vector originating at the tip of the cusp[ Performing the limit yields
for an epicycloid specimen of the Pascal|s limacžon type ]

KI−iKII � 1X
p

R
8?"z � 0#[ "1[19#

The explicit formula for the SIFs for arbitrary positioning of the dislocation\ i[e[\ arbitrary value
of z9\ is comparatively long and\ therefore\ will be omitted in this paper[ In the following section
the qualitative behavior of the SIFs will be discussed and explicit expressions for the SIFs will be
presented for the case of a dislocation positioned along the real axis[

2[ Results and discussion

The sequence in Fig[ 1 allows one to gain an overview of the SIFs obtained from numerical
evaluation of eqns "1[07# and "1[19# for the cases bx � 9\ by � 0 or bx � 0\ by � 9 for all possible
locations z9 � x9¦iy9 of the dislocation "cf[ Fig[ 0#[ The SIFs were normalized by ]

K9 � AX
1
R

[ "2[0#

The following features of the solution are clearly discernible ]

, The SIFs become singular if the dislocation is moved toward the tip of the cusp[
, Within the epicycloid there are large regions of alternating KI and KII!sign[
, In the case bx � 9\ by � 9\ KI is symmetric and KII is anti!symmetric with respect to the symmetry

axis of the epicycloid[ The opposite is true in the case bx � 9\ by � 9[
, The dislocations can be positioned such that pure mode I and mode II conditions result[

These statements are more closely examined in the sequence of Fig[ 2 which shows {lines of blind
spots| where either KI and KII are zero and which separate regions of di}erent K!sign[

For example ] if a dislocation of strength bx � 9\ by � 9 is positioned within the left region shown
in Fig[ 2"a# negative KI!values result whereas a dislocation in the right hand side leads to a crack
opening mode[ Figure 3"a# allows one to understand this phenomenon in a more intuitive way[ It
shows a Volterra dislocation within the epicycloid the presence of which may lead to negative or
positive {bending moments|\ depending on the position[

On the other hand if a dislocation of strength bx � 9\ by � 9 is positioned in the upper half of
the epicycloid shown in Fig[ 0 this will result in a closing of the cusp whereas the same dislocation
in the lower half gives rise to positive KI!values ] Fig[ 2"b#[ This behavior is illustrated in Fig[ 3"b#[

By comparison of Figs 2"a# and "c# as well as Figs 2"b# and "d# it becomes possible to identify
those points for which either pure mode I or pure mode II conditions exist[

Following Ravi!Chandar and Knauss "0873# the situations depicted in Fig[ 3 could be realized
experimentally by insertion of an insulated double!layered metal strip into the cut[ If an electric
current ~ows through this strip electromagnetic repulsion results which would separate the ~anks
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Fig[ 1[ Overview of SIFs for bx � 0\ by � 9 "b\ d# and bx � 9\ by � 0 "a\ c# for all possible positions z9 within Pascal|s
limacžon[

of the cut and\ consequently\ simulate the opening induced by a dislocation[ Depending on the
toughness of the specimen and the intensity of the current it would also be possible to induce
dynamic fracture in the epicycloid specimen[ However\ the analysis of the dynamic case would
necessitate the derivation of dynamic SIFs[

The SIFs along the symmetry line\ i[e[\ on the real axis z9 � x9\ can be obtained from the
following concise equations2 ]

2 Which were obtained through symbolic evaluation of eqns "1[07# and "1[19# by means of Mathematicaþ[
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Fig[ 2[ Lines of blind spots for the four cases shown in Fig[ 1[

KI

K9

� −byX
p

1
0−5z9−2z1

9¦3z2
9

0−z9

\

KII

K9

� bxX
p

1
00−3z9−4z1

9¦1z2
9

"1−z9#1"0−z9#
\ z9 � 0−X 0−

x9

r
[ "2[1#



W[H[ Mu�ller et al[ : International Journal of Solids and Structures 25 "0888# 2228Ð2237 2236

Fig[ 3[ A Volterra dislocation of the opening and of the shear type within the epicycloid[

Fig[ 4[ Behavior of SIFs along the axis of symmetry of Pascal|s limacžon[

Figure 4 shows a graphical representation of this result[ As it was mentioned before the SIFs go
to in_nity if the dislocation moves closer toward the tip of the cusp and to zero if the dislocation
is at the periphery z9 � −0[ Especially noteworthy is the fact that positioning of the dislocation at
most points of the symmetry line will lead to a negative KI!value[

3[ Conclusions

This paper draws attention to the potential of epicycloid specimens in fracture mechanics testing[
To this end an analytical solution for the stresses in such specimens is derived\ based on complex
potential theory[ Furthermore\ the solution is specialized to the loading case of a dislocation within
an epicycloid of the Pascal|s limacžon type[ The solution is used to derive analytical expressions for
the mode I stress intensity factor of the cusp!like crack in that specimen[ This solution is numerically
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evaluated for various positions of the applied point forces[ It is demonstrated by the calculated
values that strongly negative KI!conditions can be enforced without frictional contact and shear
of the crack surfaces when the point forces take suitable positions[

Acknowledgements

The foundations to this paper were laid during a sabbatical visit of one of the authors "H[G[#
to the Universita�t!Gesamthochschule!Paderborn at the beginning of 0885[ The stay was _nancially
supported by the Kommission fu�r Forschung und wissenschaftlichen Nachwuchs der Universita�t
Paderborn[ This support is gratefully acknowledged[ The authors would also like to thank the
head of the Laboratorium fu�r Technische Mechanik\ o[ Prof[ Dr rer[ nat[ K[ P[ Herrmann\ for his
hospitality and support[

References

Bronstein\ I[N[\ Semendjajew\ K[A[\ 0865[ Taschenbuch der Mathematik[ 05[ Au~age[ Verlag Harri Deutsch\ Zu�rich\
Frankfurt:Main\ Thun[

Gao\ H[\ Mu�ller\ W[H[\ Kemmer\ G[\ 0887[ Mixed mode fracture in epicycloid specimens I[ Thermal inclusions[ Int[ J[
Solids Structures 24"03#\ 0506Ð0522[

Milne!Thomson\ L[M[\ 0857[ Plane Elastic Systems[ Springer!Verlag\ Berlin\ Heidelberg\ New York[
Mu�ller\ W[H[\ Gao\ H[\ 0887[ Mixed mode fracture in epicycloid specimens II[ Point force loading[ Int[ J[ Solids

Structures 24"2Ð3#\ 194Ð106[
Muskhelishvili\ N[I[\ 0852[ Some Basic Problems of the Mathematical Theory of Elasticity\ fourth\ corrected and

augmented edition[ P[ Noordho} Ltd\ Groningen!Netherlands[
Ravi!Chandar\ K[\ Knauss\ W[G[\ 0873[ An experimental investigation into dynamic fracture I[ Crack initiation and

arrest[ Int[ J[ Fract[ 15\ 54Ð79[
Rice\ J[R[\ 0857[ Chapter 2 Mathematical Analysis of the Mechanics of Fracture[ In ] Liebowitz\ H[ "Ed[#\ Fracture] An

Advanced Treatise\ Volume II Mathematical Fundamentals[ Academic Press\ New York\ London[
Sokolniko}\ I[S[\ 0845[ Mathematical Theory of Elasticity\ 1nd ed[ McGraw!Hill\ New York\ Toronto\ London[
Tada\ H[\ Paris\ P[C[\ Irwin\ G[R[\ 0874[ The Stress Analysis of Cracks Handbook[ Del Research Corporation\ St Louis\

Missouri[


